
 TON Studio Tact Compiler
 Security Assessment

 January 23, 2025

 Prepared for:

 Anton Trunov
 TON Studio

 Prepared by: Tarun Bansal, Guillermo Larregay, and Bo Henderson

 Table of Contents

 Table of Contents 1
 Project Summary 2
 Executive Summary 3
 Project Goals 5
 Project Targets 6
 Project Coverage 7
 Codebase Maturity Evaluation 8
 Summary of Findings 10
 Detailed Findings 11

 1. The Tact compiler does not support FunC files with .func extension 11
 2. Circular dependencies in traits would crash the Tact compiler 13
 3. Symbolic links can be used to bypass path restrictions 15
 4. Tact grammar does not handle Unicode correctly 17
 5. No validation of shift operator arguments 19
 6. Incorrect use of the JavaScript map function for executing side effects 20
 7. Ohm library limitation for nested expressions 22

 A. Vulnerability Categories 23
 B. Code Maturity Categories 25
 C. Code Quality Findings 26
 D. Fix Review Results 28

 Detailed Fix Review Results 29
 E. Fix Review Status Categories 30
 About Trail of Bits 31
 Notices and Remarks 32

 Trail of Bits 1 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Josselin Feist , Engineering Director, Blockchain
 josselin.feist@trailofbits.com

 The following consultants were associated with this project:

 Tarun Bansal , Consultant Guillermo Larregay , Consultant
 tarun.bansal@trailofbits.com guillermo.larregay@trailofbits.com

 Bo Henderson , Consultant
 bo.henderson@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 September 12, 2024 Pre-project kickoff call

 September 27, 2024 Status update meeting #1

 October 8, 2024 Status update meeting #2

 October 15, 2024 Status update meeting #3

 October 21, 2024 Delivery of report draft

 October 21, 2024 Report readout meeting

 January 23, 2025 Delivery of final comprehensive report

 January 28, 2025 Addition of fix review appendix

 Trail of Bits 2 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Executive Summary

 Engagement Overview
 The TON Studio engaged Trail of Bits to review the security of the Tact compiler. The Tact
 language is a high-level programming language for the TON virtual machine. It is compiled
 into FunC and bytecode that runs on the TON virtual machine.

 A team of three consultants conducted the review from September 18 to October 18, 2024,
 for a total of eight engineer weeks of effort. Our testing efforts focused on identifying flaws
 that could cause incorrect semantic analysis or enable arbitrary code execution or key
 extraction. With full access to source code and documentation, we performed static and
 dynamic testing of the codebase using automated and manual processes.

 Observations and Impact
 The Tact compiler codebase is broken into well-defined components and is easy to
 navigate. However, some files include a lot of code with a complex code flow involving
 multiple nested control flow structures, such as the program writer component. Such a
 complex codebase makes it difficult to follow the data flow and understand the security
 properties of the project.

 One medium-severity issue highlights the test suite’s inefficiency in capturing logic issues. A
 comprehensive and efficient test suite could also discover other low- and
 informational-severity issues.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the TON Studio take the following steps:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Improve and expand the test suite. A complex system such as the Tact compiler
 should be thoroughly tested, considering normal usage flows as well as specific or
 edge cases. The fuzz test suite can also be expanded to test the compiler grammar,
 optimizer, and writers with well-defined invariants. A strong test suite included as
 part of the CI/CD pipeline will also help detect bugs earlier.

 Trail of Bits 3 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Finding Severities and Categories
 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 1

 Low 2

 Informational 4

 Undetermined 0

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 1

 Data Validation 6

 Trail of Bits 4 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Project Goals

 The engagement was scoped to provide a security assessment of the TON Studio’s Tact
 compiler. Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Is it possible to generate a malicious Tact file that crashes the compiler or generates
 FunC code that is not compilable?

 ● Is it possible to alter the host’s filesystem outside the current project root directory?
 Can a malicious project leak data from the host system?

 ● Is it possible to generate an incorrect or invalid program that passes syntactic and
 semantic checks?

 ● Are there bugs in the Tact compiler that could enable arbitrary code execution?

 ● Is it possible to write visibly correct Tact code that compiles to unexpected FunC
 code?

 ● Can the optimizer introduce bugs or change the code behavior?

 ● Does the compiler write correct FunC code files?

 Trail of Bits 5 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Project Targets

 The engagement involved a review and testing of the following target.

 Tact Compiler
 Repository https://github.com/tact-lang/tact/

 Version 0106ea14857bcf3c40dd10135243d0de96012871

 Type TypeScript

 Platform TON

 Trail of Bits 6 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact/

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Manual review and analysis of the provided grammar and semantics

 ● Manual review of the complete compilation flow, from Tact to FunC, from FunC to
 Fift, and the bag of cells representation of the output

 ● Manual review of the different parts of the Tact abstract syntax tree (AST)
 generation, analysis and optimization, and translation to FunC

 ● Basic automated fuzz testing of the optimizer and the FunC interpreter

 ● Static analysis of the compiler’s TypeScript code files

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● The optimizer is not yet integrated into the main compiler code. The changes to the
 compiler code that are needed to add the optimizer to the data flow could affect the
 code generation or introduce bugs.

 ● The individual AST and code generation functions were reviewed and analyzed, but
 since the code relies on recursive traversal of structures, it was not tested with all
 possible edge cases.

 ● The FunC compiler was not part of the scope of the audit. Therefore, any bugs or
 unexpected behaviors that could be present in the FunC compilation were out of
 scope.

 ● Third-party libraries used as dependencies were out of scope.

 ● The standard library code and any other Tact files were not reviewed.

 Trail of Bits 7 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The project makes minimal use of arithmetic operations
 for constant evaluation. We identified no issues in
 relation to arithmetic overflows, division by zero, or
 precision loss.

 Satisfactory

 Auditing The Tact compiler emits informative log messages at
 appropriate places. The set of error messages is large,
 and the information they contain is descriptive.

 However, we found the use of “internal compiler errors”
 to be confusing; we recommend documenting when an
 error is meant to be an internal compiler error and what
 impact it has on the code. For example, if the Tact code
 references an undefined type, then the compiler throws
 an internal compiler error instead of a normal error.

 Moderate

 Complexity
 Management

 The codebase is generally well organized, with modular
 components and a clear file structure. Many of the
 source files are short and easy to read. However, some
 files show several instances of code repetition.

 Larger modules could be refactored into several files or
 additional functions to improve legibility and reduce code
 repetition.

 Some patterns, such as the recursive processing of the
 AST nodes, are prone to errors and can be more
 challenging for a new collaborator to understand.

 Running static analysis tools on the code could also help
 detect and fix code smells, as mentioned in the Code
 Quality Findings section.

 Moderate

 Documentation The documentation available on the project’s website is Weak

 Trail of Bits 8 TON Studio Tact Compiler
 PUBLIC Security Assessment

 targeted toward Tact developers. Other than a high-level
 description of the system in CONTRIBUTING.md , there is
 no specific documentation for the compiler modules and
 compilation stages.

 The code could use more comments, particularly in the
 bigger files and complex functions.

 Testing and
 Verification

 The provided test suite consists of 895 unit test cases.
 However, given the size and complexity of the compiler
 codebase, it is not suitable for the project. The test suite
 can be improved to cover all the features, as well as
 more Tact code examples and edge cases, such as the
 ones described in the Detailed Findings section. The
 coverage report generation component is broken, so
 there is no measurable information about the test suite’s
 efficiency.

 Weak

 Trail of Bits 9 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 The Tact compiler does not support FunC files
 with .func extension

 Data Validation Informational

 2 Circular dependencies in traits would crash the
 Tact compiler

 Data Validation Medium

 3 Symbolic links can be used to bypass path
 restrictions

 Access Controls Low

 4 Tact grammar does not handle Unicode correctly Data Validation Low

 5 No validation of shift operator arguments Data Validation Informational

 6 Incorrect use of the JavaScript map function for
 executing side effects

 Data Validation Informational

 7 Ohm library limitation for nested expressions Data Validation Informational

 Trail of Bits 10 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Detailed Findings

 1. The Tact compiler does not support FunC files with .func extension

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-1

 Target: src/imports/resolveLibrary.ts

 Description
 The Tact language compiler considers a source file with the .func extension to be a Tact
 file and appends the .tact extension to the filename. As a result, importing a .func file
 throws an exception.

 The Tact language documentation mentions that a .fc or .func file can be imported with
 the import keyword. However, the resolveLibrary function does not check for the
 .func extension while deciding whether a source file is a Tact file or a FunC file. It appends
 the .tact extension to any file imported that does not have a .tact or .fc extension. The
 file with the .tact extension appended to it does not exist, which results in a project
 compilation failure with an exception:

 let importName = args.name;
 const kind: "tact" | "func" = importName.endsWith(".fc") ? "func" : "tact" ;
 if (!importName.endsWith(".tact") && !importName.endsWith(".fc")) {

 importName = importName + ".tact" ;
 }

 Figure 1.1: A snippet of the resolveLibrary function
 (tact/src/imports/resolveLibrary.ts#L56–L60)

 Additionally, the exception message shows only the actual filename mentioned in the
 import statement, which does not help the developer understand the reason for the
 compilation failure.

 Exploit Scenario
 Alice creates a Tact project and tries to import an old FunC source file named old.func in
 her Tact file named main.tact . The project compilation fails with the exception, Could
 not resolve import "./old.func" in main.tact . Alice sees that the old.func file
 exists and cannot understand why the compilation is failing.

 Trail of Bits 11 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/imports/resolveLibrary.ts#L56-L60

 Recommendations
 Short term, update the resolveLibrary function to consider .func files as FunC source
 files.

 Long term, expand the unit test cases to test all the edge cases.

 Trail of Bits 12 TON Studio Tact Compiler
 PUBLIC Security Assessment

 2. Circular dependencies in traits would crash the Tact compiler

 Severity: Medium Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-2

 Target: src/types/resolveDescriptors.ts

 Description
 The contract and traits dependency resolver crashes the compiler when there are circular
 dependencies in traits.

 The processType function in the resolveDescriptors function checks whether there
 are any circular dependencies in traits inherited by a contract by keeping track of
 intermediate traits in the processing variable:

 function processType(name: string) {
 // Check if processed
 if (processed.has(name)) {

 return ;
 }
 if (processing.has(name)) {

 throwCompilationError(
 ̀Circular dependency detected for type " ${ name } "` ,
 types.get(name)!.ast.loc,

);
 }
 processing.has(name);

 // Process dependencies first
 const dependencies = Array . from (types.values()).filter((v) =>

 v.traits.find((v2) => v2.name === name),
);
 for (const d of dependencies) {

 processType(d.name);
 }

 // Copy traits
 copyTraits(types.get(name)!);

 // Mark as processed
 processed.add(name);
 processing. delete (name);

 }

 Figure 2.1: The processType function
 (tact/src/types/resolveDescriptors.ts#L1773–L1800)

 Trail of Bits 13 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L1773-L1800

 However, as shown in the highlighted line in figure 2.1, the trait being processed is not
 added to the processing list, and because of this, the processType function keeps
 calling itself recursively indefinitely if there are circular dependencies in the traits, and the
 Tact compiler eventually crashes with the Maximum call stack size exceeded error.

 Exploit Scenario
 Alice pushes the following Tact code to her remote Git repository, and it crashes her CI/CD
 pipeline:

 trait A with B {}
 trait B with A {}

 contract Test with A {}

 Figure 2.2: A contract with a circular trait dependency

 Recommendations
 Short term, replace the highlighted line in figure 2.1 with the processing.add(name)
 statement to track intermediate traits correctly and detect circular dependencies.

 Long term, improve the test suite to include test cases for all the errors thrown by the
 compiler.

 Trail of Bits 14 TON Studio Tact Compiler
 PUBLIC Security Assessment

 3. Symbolic links can be used to bypass path restrictions

 Severity: Low Difficulty: Low

 Type: Access Controls Finding ID: TOB-TACT-3

 Target: src/vfs/createNodeFileSystem.ts

 Description
 The filesystem functions that read and write files do not check for symbolic links. This
 makes it possible for a user with the right permissions to import files outside the current
 root path or overwrite arbitrary files.

 When the readFile and writeFile functions are defined in
 createNodeFileSystem.ts , the default flags are used for fs.readFileSync and
 fs.writeFileSync calls. This means that when a file is read, the file will be opened, or an
 exception will be thrown if it does not exist. When a file is written to, the default “w” flag
 creates the file if it does not exist or opens and truncates the existing file.

 The only access control check performed in both cases verifies that the file’s location is
 inside the current root path for the compilation. This check is passed when a symbolic link
 is placed inside the root path, and since the link destination is not verified, any file could be
 read or written to.

 export function createNodeFileSystem(
 root: string,
 readonly: boolean = true ,

): VirtualFileSystem {
 let normalizedRoot = path.normalize(root);
 if (!normalizedRoot.endsWith(path.sep)) {

 normalizedRoot += path.sep;
 }
 return {

 root: normalizedRoot,
 exists(filePath: string): boolean {

 if (!filePath.startsWith(normalizedRoot)) {
 throw new Error(

 ̀Path '${filePath}' is outside of the root directory
 '${normalizedRoot}' ̀,

);
 }
 return fs.existsSync(filePath);

 },
 resolve(...filePath) {

 return path.normalize(path.resolve(normalizedRoot, ...filePath));

 Trail of Bits 15 TON Studio Tact Compiler
 PUBLIC Security Assessment

 },
 readFile(filePath) {

 if (!filePath.startsWith(normalizedRoot)) {
 throw new Error(

 ̀Path '${filePath}' is outside of the root directory
 '${normalizedRoot}' ̀,

);
 }
 return fs.readFileSync(filePath);

 },
 writeFile(filePath, content) {

 if (readonly) {
 throw new Error("File system is readonly");

 }
 if (!filePath.startsWith(normalizedRoot)) {

 throw new Error(
 ̀Path '${filePath}' is outside of the root directory

 '${normalizedRoot}' ̀,
);

 }

 mkdirp.sync(path.dirname(filePath));
 fs.writeFileSync(filePath, content);

 },
 };

 }

 Figure 3.1: The createNodeFileSystem function
 (tact/src/vfs/createNodeFileSystem.ts#L6–L49)

 Exploit Scenario
 Bob distributes a malicious Tact project in GitHub, where one of the output files is a
 symbolic link to ~/.ssh/id_ed25519 . When Alice compiles this project, her default-named
 SSH private keys are overwritten.

 Recommendations
 Short term, either add a check for symbolic links that ensures their target paths are within
 the project root directory when opening files, or completely disallow symbolic links.

 Long term, improve the filesystem test suite to include test cases for all platform-specific
 behavior and exceptional cases mentioned in the Node.js documentation.

 Trail of Bits 16 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/vfs/createNodeFileSystem.ts#L6-L49

 4. Tact grammar does not handle Unicode correctly

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-4

 Target: src/grammar/grammar.ohm

 Description
 Unicode is a complex encoding standard. Some control characters, such as all the newline
 character alternatives, are not correctly handled in the Tact grammar. Additionally, it is
 possible to alter the source code visualization using Unicode right-to-left and left-to-right
 overrides, causing users and developers to be unaware of potentially dangerous code.

 The Tact grammar defines several line terminators: CR (\u000D), LF (\u000A), LS (\u2028),
 and PS (\u2029).

 lineTerminator = "\n" | "\r" | "\u2028" | "\u2029"

 Figure 4.1: The lineTerminator definition, lacking some mandatory breaks
 (tact/src/grammar/grammar.ohm#L406)

 However, Unicode Standard Annex #14 also defines FF (\u000C) and VT (\u000B) as
 mandatory breaks. Some editors (such as Visual Studio Code; figure 4.2a) show the control
 characters, but some might not (such as a terminal; figure 4.2b), which can be misleading
 for the user or developer.

 a) b)

 Figure 4.2: An example of code that displays differently depending on the editor used

 Trail of Bits 17 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L406
https://www.unicode.org/reports/tr14/tr14-32.html

 The same misleading behavior can be reproduced using right-to-left (\u202E) and
 left-to-right (\u202D) overrides. Exploiting these text direction changes makes it easier for
 malicious developers to hide unexpected behavior in clear sight.

 Figure 4.3 shows an example of a contract that can show different operations depending
 on the editor used. This is a visualization issue; the compiler is unaffected, and the
 generated FunC code follows the correct logic.

 a) b)

 Figure 4.3: An example of code exploiting right-to-left override and left-to-right override control
 characters

 Exploit Scenario
 Bob wants to deploy a malicious contract that intentionally miscalculates fees to steal
 jettons from the contract users. To gain people’s trust, he makes a blog post showing the
 contract code and explaining how it works. Since web browsers can understand and
 process Unicode strings, the code shown is not what is actually compiled, and people can
 still download and verify that the output bag of cells matches Bob’s.

 Recommendations
 Short term, follow Unicode Technical Standard #55 (“Unicode Source Code Handling”) and
 ensure that all problematic cases are handled correctly.

 Long term, improve the test suite to include test cases for Unicode ambiguities.

 Trail of Bits 18 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://www.unicode.org/reports/tr55/

 5. No validation of shift operator arguments

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-5

 Target: src/types/resolveExpression.ts

 Description
 The Tact compiler does not validate that the shift operator argument is less than 257. The
 FunC compiler throws an error for the use of an invalid shift operator argument.

 The Tact compiler resolves all the types and ensures that the operands of all the operators
 are of the correct type. However, it does not check the bounds of the operand values, so it
 could miss some trivial bugs that would then be caught by the FunC compiler or only at
 runtime.

 get fun hello1(src: Int): Int {
 return src << 34605176784551 & 32769;

 }

 Figure 5.1: A sample function with an invalid shift operator argument

 Recommendations
 Short term, implement a bounds check for shift operator arguments to ensure that the
 operation does not result in an unexpected value.

 Long term, consider having the compiler catch trivial runtime errors to improve the
 developer experience and security of the codebase.

 Trail of Bits 19 TON Studio Tact Compiler
 PUBLIC Security Assessment

 6. Incorrect use of the JavaScript map function for executing side effects

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-6

 Target: src/grammar/rename.ts

 Description
 The renameModuleItems function of the rename.ts file sorts the attributes in the AST for
 Tact functions, traits, and contracts with the map JavaScript function, which does not update
 the objects in place.

 The renameModuleItems function of the rename.ts file is used to canonicalize the Tact
 code item names for comparison of two code files. The comparison function expects the
 renameModuleItems function to return a sorted array of items with sorted attributes for
 each item object:

 public renameModuleItems(items: AstModuleItem []): AstModuleItem[] {
 // Give new names to module-level elements.
 let renamedItems = items.map((item) => this .changeItemName(item));

 if (this .sort) {
 renamedItems.map((item) => this .sortAttributes(item));

 }

 // Apply renaming to the contents of these elements.
 renamedItems = renamedItems.map((item) =>

 this .renameModuleItemContents(item),
);

 return this .sort ? this .sortModuleItems(renamedItems) : renamedItems;
 }

 Figure 6.1: The renameModuleItems function in the rename.ts file
 (tact/src/grammar/rename.ts#L114–L128)

 However, as shown in the highlighted line in figure 5.1, the returned value of the map
 function call is not stored in the renamedItems variable, which discards any updates made
 to the renamedItems array items, resulting in unsorted attributes in the code items. These
 unsorted attributes could cause the comparator to return false negatives for the same
 code and could allow users to pass the plagiarism test by changing the order of attributes
 in the code.

 Trail of Bits 20 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/rename.ts#L114-L128

 This issue cannot be exploited because of the use of the Array.sort function in the
 sortAttributes function in the sort.ts file. The Array.sort function sorts the array in
 place; therefore, the renamedItems array items have sorted attributes.

 Recommendations
 Short term, replace the map function with the forEach function.

 Long term, refactor the codebase to use non-mutating methods to avoid unexpected side
 effects and confusion.

 Trail of Bits 21 TON Studio Tact Compiler
 PUBLIC Security Assessment

 7. Ohm library limitation for nested expressions

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TACT-7

 Target: src/grammar/grammar.ohm

 Description
 The Tact compiler uses the Ohm parsing toolkit to implement the source code parser. The
 Ohm library uses recursion to parse nested items in expressions and throws a
 RangeError: Maximum call stack size exceeded error for deeply nested expressions.
 For example, the expression shown in the following image throws the error and crashes
 the compiler:

 ((
 ((((((((((((((((1)))
)))))))))))))))))))))))))))))))))

 Figure 7.1: An example expression that would cause a compiler error

 The above expression is a valid Tact code expression and should be parsed correctly.
 However, because of the limitations of the Ohm library, the Tact compiler does not support
 it.

 Recommendations
 Short term, document the limitations of the Ohm library for deeply nested expressions.

 Trail of Bits 22 TON Studio Tact Compiler
 PUBLIC Security Assessment

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 23 TON Studio Tact Compiler
 PUBLIC Security Assessment

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 24 TON Studio Tact Compiler
 PUBLIC Security Assessment

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Documentation The presence of comprehensive and readable codebase documentation

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 25 TON Studio Tact Compiler
 PUBLIC Security Assessment

 C. Code Quality Findings

 The following findings are not associated with any specific vulnerabilities. However,
 addressing them will enhance code readability and may prevent the introduction of
 vulnerabilities in the future.

 ● One of the project’s dependencies has a known vulnerability. Running npx yarn
 audit on the repository shows that the ajv-cli package used for validating the
 linting schema depends on a vulnerable version of the fast-json-patch package.

 ● The TypeScript compiler can be configured to be stricter. The tsconfig.json
 configuration file does not enforce several options to increase the generated code’s
 robustness and reliability. An example of a stricter tsconfig.json file can be
 found in the “ recommendations for TSConfig bases ” repository. The strictest
 configuration should be used, and all errors and warnings that arise from the
 process must be addressed.

 ● There are several instances of unused variables and function parameters.
 Compiling Tact code with the stricter rule set reveals several cases of unused
 variables in the following files:

 ○ src/abi/global.ts

 ○ src/abi/map.ts

 ○ src/bindings/typescript/serializers.ts

 ○ src/bindings/typescript/writeStruct.ts

 ○ src/generator/writers/writeAccessors.ts

 ○ src/generator/writers/writeContract.ts

 ○ src/generator/writers/writeSerialization.ts

 ○ src/types/resolveDescriptors.ts

 ○ src/types/resolveExpression.ts

 ● Some built-in Ohm rules are redefined in the grammar. The letterAscii ,
 letterAsciiUC , and letterAsciiLC rules are equivalent to the built-in letter ,
 upper , and lower rules, respectively.

 ● There are unused and duplicated rules in the Tact grammar. The
 letterDigitUnderscore rule is unused and is equivalent to the typeIdPart and
 idPart rules.

 Trail of Bits 26 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tsconfig/bases/blob/main/bases/strictest.json
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L264
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L231
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L269

 ● There is a misleading error message in the Tact grammar. The
 checkVariableName function is used to validate several attribute names in
 grammar.ts . If the validation fails, the error message mentions “variable name”
 regardless of the origin of the error. This can be confusing for users.

 ● The return type of the buildFieldDescription function does not explicitly
 indicate all fields. The FieldDescription struct returned by the function lacks an
 explicit index key, and the order of the returned fields does not match the
 definition.

 ● The division functions do not check a precondition; instead, they rely on the
 caller. As mentioned in the comments for the divFloor and modFloor functions,
 they do not check for cases when the divisor is zero. This is not an issue in the
 current state of the codebase, but it can introduce issues in the future if a developer
 adds a new use case where the divisor is not checked.

 ● The buildConstantDescription function does not run its struct field count
 before traversing the struct. When passed a struct, it loops over all fields before
 checking for the existence of at least one field. This check should be performed
 before the iterations.

 Trail of Bits 27 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/checkVariableName.ts#L4-L11
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ts
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L385-L413
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L132-L140
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L151-L156
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L415-L613
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L517-L522

 D. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From January 2 to January 3, 2025, Trail of Bits reviewed the fixes and mitigations
 implemented by the TON Studio team for the issues identified in this report. We reviewed
 each fix to determine its effectiveness in resolving the associated issue.

 Several of the fixes also improve the test suite, adding cases with the mentioned exploit
 scenarios and new examples. The Unicode character handling was not changed; however,
 the team plans on changing the Unicode support for Tact in the long term. The Ohm library
 nesting limit (TOB-TACT-7) was not solved, as it is outside of the TON Studio codebase, but
 the Tact compiler documentation was updated to reflect the issue. Finally, TOB-TACT-5
 requires a better solution for the general case; however, the proposed solution works for
 the cases in which the bit shift operand is constant or can be calculated as a constant.

 In summary, of the seven issues described in this report, TON Studio has resolved four
 issues, has partially resolved one issue, and has not resolved the remaining two issues. For
 additional information, please see the Detailed Fix Review Results below.

 ID Title Severity Status

 1 The Tact compiler does not support FunC files with
 .func extension

 Informational Resolved

 2 Circular dependencies in traits would crash the
 Tact compiler

 Medium Resolved

 3 Symbolic links can be used to bypass path
 restrictions

 Low Resolved

 4 Tact grammar does not handle Unicode correctly Low Unresolved

 5 No validation of shift operator arguments Informational Partially
 Resolved

 6 Incorrect use of the JavaScript map function for
 executing side effects

 Informational Resolved

 Trail of Bits 28 TON Studio Tact Compiler
 PUBLIC Security Assessment

 7 Ohm library limitation for nested expressions Informational Unresolved

 Detailed Fix Review Results
 TOB-TACT-1: The Tact compiler does not support FunC files with .func extension
 Resolved in commit abe8746 . The .func extension was added to the filename check, and a
 new test case was added to ensure that .func type files are imported correctly.

 TOB-TACT-2: Circular dependencies in traits would crash the Tact compiler
 Resolved in commit d12cf94 . The current trait is now added to the processing list, and the
 circular dependency is now detected. A new test case was added to check for circular
 dependencies.

 TOB-TACT-3: Symbolic links can be used to bypass path restrictions
 Resolved in commit 40a6342 . A new function to check filepaths for symbolic links and
 disallow them was added to createNodeFilesystem.ts . All read and write file accesses
 in the createNodeFileSystem function are now validated. Additionally, test files and test
 cases were added to check for symbolic link imports.

 TOB-TACT-4: Tact grammar does not handle Unicode correctly
 Unresolved. No changes were made to the project to address this issue.

 The client provided the following context for this finding’s fix status:

 We acknowledge possible Unicode exploits via text editors and most likely our long term
 goal will be ban Unicode from Tact source code except comments and string literals.

 TOB-TACT-5: No validation of shift operator arguments
 Partially resolved in commit 32dbaa8 . The implemented fix works only for constant
 expressions, without variables. However, the team stated that proper constant propagation
 static analysis will be included in the next Tact release. Tests were also added for constant
 bit shifts.

 TOB-TACT-6: Incorrect use of the JavaScript map function for executing side effects
 Resolved in commit 00bf680 . The renameModuleItems function was refactored to fix the
 issue, and now the renamedItems map is correctly sorted when the flag is set.

 TOB-TACT-7: Ohm library limitation for nested expressions
 Unresolved. As this is a limitation in the Ohm library, it has not been resolved. However, the
 team documented the issue in the Expressions section of Tact main documentation.

 Trail of Bits 29 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/tact-lang/tact/commit/abe8746d26aa968c7d9d19e30f3e49524d508f1d
https://github.com/tact-lang/tact/commit/d12cf9427b5e96a4c14604c058b59e9f610e33e8
https://github.com/tact-lang/tact/commit/40a6342604ae3e36c662681739df5e1e6991e389
https://github.com/tact-lang/tact/commit/32dbaa8d84d200903c2c3321cc168707b7b832b7
https://github.com/tact-lang/tact/commit/00bf680218ae37f05a6f019ca2529a7a43642953
https://docs.tact-lang.org/book/expressions/

 E. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 30 TON Studio Tact Compiler
 PUBLIC Security Assessment

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 31 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2025 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to TON
 Studio under the terms of the project statement of work and has been made public at TON
 Studio’s request. Material within this report may not be reproduced or distributed in part
 or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 32 TON Studio Tact Compiler
 PUBLIC Security Assessment

https://github.com/trailofbits/publications

