
‭TON Studio Tact Compiler‬
‭Security Assessment‬

‭January 23, 2025‬

‭Prepared for:‬

‭Anton Trunov‬
‭TON Studio‬

‭Prepared by:‬‭Tarun Bansal, Guillermo Larregay, and‬‭Bo Henderson‬

‭Table of Contents‬

‭Table of Contents‬ ‭1‬
‭Project Summary‬ ‭2‬
‭Executive Summary‬ ‭3‬
‭Project Goals‬ ‭5‬
‭Project Targets‬ ‭6‬
‭Project Coverage‬ ‭7‬
‭Codebase Maturity Evaluation‬ ‭8‬
‭Summary of Findings‬ ‭10‬
‭Detailed Findings‬ ‭11‬

‭1. The Tact compiler does not support FunC files with .func extension‬ ‭11‬
‭2. Circular dependencies in traits would crash the Tact compiler‬ ‭13‬
‭3. Symbolic links can be used to bypass path restrictions‬ ‭15‬
‭4. Tact grammar does not handle Unicode correctly‬ ‭17‬
‭5. No validation of shift operator arguments‬ ‭19‬
‭6. Incorrect use of the JavaScript map function for executing side effects‬ ‭20‬
‭7. Ohm library limitation for nested expressions‬ ‭22‬

‭A. Vulnerability Categories‬ ‭23‬
‭B. Code Maturity Categories‬ ‭25‬
‭C. Code Quality Findings‬ ‭26‬
‭D. Fix Review Results‬ ‭28‬

‭Detailed Fix Review Results‬ ‭29‬
‭E. Fix Review Status Categories‬ ‭30‬
‭About Trail of Bits‬ ‭31‬
‭Notices and Remarks‬ ‭32‬

‭Trail of Bits‬ ‭1‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Project Summary‬

‭Contact Information‬
‭The following project manager was associated with this project:‬

‭Jeff Braswell‬‭, Project Manager‬
‭jeff.braswell@trailofbits.com‬

‭The following engineering director was associated with this project:‬

‭Josselin Feist‬‭, Engineering Director, Blockchain‬
‭josselin.feist@trailofbits.com‬

‭The following consultants were associated with this project:‬

‭Tarun Bansal‬‭, Consultant‬ ‭Guillermo Larregay‬‭, Consultant‬
‭tarun.bansal@trailofbits.com‬ ‭guillermo.larregay@trailofbits.com‬

‭Bo Henderson‬‭, Consultant‬
‭bo.henderson@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭September 12, 2024‬ ‭Pre-project kickoff call‬

‭September 27, 2024‬ ‭Status update meeting #1‬

‭October 8, 2024‬ ‭Status update meeting #2‬

‭October 15, 2024‬ ‭Status update meeting #3‬

‭October 21, 2024‬ ‭Delivery of report draft‬

‭October 21, 2024‬ ‭Report readout meeting‬

‭January 23, 2025‬ ‭Delivery of final comprehensive‬‭report‬

‭January 28, 2025‬ ‭Addition of fix review appendix‬

‭Trail of Bits‬ ‭2‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Executive Summary‬

‭Engagement Overview‬
‭The TON Studio engaged Trail of Bits to review the security of the Tact compiler. The Tact‬
‭language is a high-level programming language for the TON virtual machine. It is compiled‬
‭into FunC and bytecode that runs on the TON virtual machine.‬

‭A team of three consultants conducted the review from September 18 to October 18, 2024,‬
‭for a total of eight engineer weeks of effort. Our testing efforts focused on identifying flaws‬
‭that could cause incorrect semantic analysis or enable arbitrary code execution or key‬
‭extraction. With full access to source code and documentation, we performed static and‬
‭dynamic testing of the codebase using automated and manual processes.‬

‭Observations and Impact‬
‭The Tact compiler codebase is broken into well-defined components and is easy to‬
‭navigate. However, some files include a lot of code with a complex code flow involving‬
‭multiple nested control flow structures, such as the program writer component. Such a‬
‭complex codebase makes it difficult to follow the data flow and understand the security‬
‭properties of the project.‬

‭One medium-severity issue highlights the test suite’s inefficiency in capturing logic issues. A‬
‭comprehensive and efficient test suite could also discover other low- and‬
‭informational-severity issues.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that the TON Studio take the following steps:‬

‭●‬ ‭Remediate the findings disclosed in this report.‬‭These‬‭findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations.‬

‭●‬ ‭Improve and expand the test suite.‬‭A complex system‬‭such as the Tact compiler‬
‭should be thoroughly tested, considering normal usage flows as well as specific or‬
‭edge cases. The fuzz test suite can also be expanded to test the compiler grammar,‬
‭optimizer, and writers with well-defined invariants. A strong test suite included as‬
‭part of the CI/CD pipeline will also help detect bugs earlier.‬

‭Trail of Bits‬ ‭3‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Finding Severities and Categories‬
‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭1‬

‭Low‬ ‭2‬

‭Informational‬ ‭4‬

‭Undetermined‬ ‭0‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Access Controls‬ ‭1‬

‭Data Validation‬ ‭6‬

‭Trail of Bits‬ ‭4‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the TON Studio’s Tact‬
‭compiler. Specifically, we sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Is it possible to generate a malicious Tact file that crashes the compiler or generates‬
‭FunC code that is not compilable?‬

‭●‬ ‭Is it possible to alter the host’s filesystem outside the current project root directory?‬
‭Can a malicious project leak data from the host system?‬

‭●‬ ‭Is it possible to generate an incorrect or invalid program that passes syntactic and‬
‭semantic checks?‬

‭●‬ ‭Are there bugs in the Tact compiler that could enable arbitrary code execution?‬

‭●‬ ‭Is it possible to write visibly correct Tact code that compiles to unexpected FunC‬
‭code?‬

‭●‬ ‭Can the optimizer introduce bugs or change the code behavior?‬

‭●‬ ‭Does the compiler write correct FunC code files?‬

‭Trail of Bits‬ ‭5‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Project Targets‬

‭The engagement involved a review and testing of the following target.‬

‭Tact Compiler‬
‭Repository‬ ‭https://github.com/tact-lang/tact/‬

‭Version‬ ‭0106ea14857bcf3c40dd10135243d0de96012871‬

‭Type‬ ‭TypeScript‬

‭Platform‬ ‭TON‬

‭Trail of Bits‬ ‭6‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact/

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Manual review and analysis of the provided grammar and semantics‬

‭●‬ ‭Manual review of the complete compilation flow, from Tact to FunC, from FunC to‬
‭Fift, and the bag of cells representation of the output‬

‭●‬ ‭Manual review of the different parts of the Tact abstract syntax tree (AST)‬
‭generation, analysis and optimization, and translation to FunC‬

‭●‬ ‭Basic automated fuzz testing of the optimizer and the FunC interpreter‬

‭●‬ ‭Static analysis of the compiler’s TypeScript code files‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭The optimizer is not yet integrated into the main compiler code. The changes to the‬
‭compiler code that are needed to add the optimizer to the data flow could affect the‬
‭code generation or introduce bugs.‬

‭●‬ ‭The individual AST and code generation functions were reviewed and analyzed, but‬
‭since the code relies on recursive traversal of structures, it was not tested with all‬
‭possible edge cases.‬

‭●‬ ‭The FunC compiler was not part of the scope of the audit. Therefore, any bugs or‬
‭unexpected behaviors that could be present in the FunC compilation were out of‬
‭scope.‬

‭●‬ ‭Third-party libraries used as dependencies were out of scope.‬

‭●‬ ‭The standard library code and any other Tact files were not reviewed.‬

‭Trail of Bits‬ ‭7‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭The project makes minimal use of arithmetic operations‬
‭for constant evaluation. We identified no issues in‬
‭relation to arithmetic overflows, division by zero, or‬
‭precision loss.‬

‭Satisfactory‬

‭Auditing‬ ‭The Tact compiler emits informative log messages at‬
‭appropriate places. The set of error messages is large,‬
‭and the information they contain is descriptive.‬

‭However, we found the use of “internal compiler errors”‬
‭to be confusing; we recommend documenting when an‬
‭error is meant to be an internal compiler error and what‬
‭impact it has on the code. For example, if the Tact code‬
‭references an undefined type, then the compiler throws‬
‭an internal compiler error instead of a normal error.‬

‭Moderate‬

‭Complexity‬
‭Management‬

‭The codebase is generally well organized, with modular‬
‭components and a clear file structure. Many of the‬
‭source files are short and easy to read. However, some‬
‭files show several instances of code repetition.‬

‭Larger modules could be refactored into several files or‬
‭additional functions to improve legibility and reduce code‬
‭repetition.‬

‭Some patterns, such as the recursive processing of the‬
‭AST nodes, are prone to errors and can be more‬
‭challenging for a new collaborator to understand.‬

‭Running static analysis tools on the code could also help‬
‭detect and fix code smells, as mentioned in the‬‭Code‬
‭Quality Findings‬‭section.‬

‭Moderate‬

‭Documentation‬ ‭The documentation available on the project’s website is‬ ‭Weak‬

‭Trail of Bits‬ ‭8‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭targeted toward Tact developers. Other than a high-level‬
‭description of the system in‬‭CONTRIBUTING.md‬‭, there‬‭is‬
‭no specific documentation for the compiler modules and‬
‭compilation stages.‬

‭The code could use more comments, particularly in the‬
‭bigger files and complex functions.‬

‭Testing and‬
‭Verification‬

‭The provided test suite consists of 895 unit test cases.‬
‭However, given the size and complexity of the compiler‬
‭codebase, it is not suitable for the project. The test suite‬
‭can be improved to cover all the features, as well as‬
‭more Tact code examples and edge cases, such as the‬
‭ones described in the Detailed Findings section. The‬
‭coverage report generation component is broken, so‬
‭there is no measurable information about the test suite’s‬
‭efficiency.‬

‭Weak‬

‭Trail of Bits‬ ‭9‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭The Tact compiler does not support FunC files‬
‭with .func extension‬

‭Data Validation‬ ‭Informational‬

‭2‬ ‭Circular dependencies in traits would crash the‬
‭Tact compiler‬

‭Data Validation‬ ‭Medium‬

‭3‬ ‭Symbolic links can be used to bypass path‬
‭restrictions‬

‭Access Controls‬ ‭Low‬

‭4‬ ‭Tact grammar does not handle Unicode correctly‬ ‭Data Validation‬ ‭Low‬

‭5‬ ‭No validation of shift operator arguments‬ ‭Data Validation‬ ‭Informational‬

‭6‬ ‭Incorrect use of the JavaScript map function for‬
‭executing side effects‬

‭Data Validation‬ ‭Informational‬

‭7‬ ‭Ohm library limitation for nested expressions‬ ‭Data Validation‬ ‭Informational‬

‭Trail of Bits‬ ‭10‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Detailed Findings‬

‭1. The Tact compiler does not support FunC files with .func extension‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-1‬

‭Target:‬‭src/imports/resolveLibrary.ts‬

‭Description‬
‭The Tact language compiler considers a source file with the‬‭.func‬‭extension to be a Tact‬
‭file and appends the‬‭.tact‬‭extension to the filename.‬‭As a result, importing a‬‭.func‬‭file‬
‭throws an exception.‬

‭The Tact language documentation mentions that a‬‭.fc‬‭or‬‭.func‬‭file can be imported with‬
‭the‬‭import‬‭keyword. However, the‬‭resolveLibrary‬‭function‬‭does not check for the‬
‭.func‬‭extension while deciding whether a source file‬‭is a Tact file or a FunC file. It appends‬
‭the‬‭.tact‬‭extension to any file imported that does‬‭not have a‬‭.tact‬‭or‬‭.fc‬‭extension. The‬
‭file with the‬‭.tact‬‭extension appended to it does‬‭not exist, which results in a project‬
‭compilation failure with an exception:‬

‭let‬‭importName‬‭=‬‭args.name;‬
‭const‬‭kind:‬‭"tact"‬‭|‬‭"func"‬‭=‬‭importName.endsWith(‬‭".fc"‬‭)‬‭?‬‭"func"‬‭:‬‭"tact"‬‭;‬
‭if‬‭(!importName.endsWith(‬‭".tact"‬‭)‬‭&&‬‭!importName.endsWith(‬‭".fc"‬‭))‬‭{‬

‭importName‬‭=‬‭importName‬‭+‬‭".tact"‬‭;‬
‭}‬

‭Figure 1.1: A snippet of the‬‭resolveLibrary‬‭function‬
‭(‬‭tact/src/imports/resolveLibrary.ts#L56–L60‬‭)‬

‭Additionally, the exception message shows only the actual filename mentioned in the‬
‭import‬‭statement, which does not help the developer‬‭understand the reason for the‬
‭compilation failure.‬

‭Exploit Scenario‬
‭Alice creates a Tact project and tries to import an old FunC source file named‬‭old.func‬‭in‬
‭her Tact file named‬‭main.tact‬‭. The project compilation‬‭fails with the exception,‬‭Could‬
‭not‬‭resolve‬‭import‬‭"./old.func"‬‭in‬‭main.tact‬‭. Alice‬‭sees that the‬‭old.func‬‭file‬
‭exists and cannot understand why the compilation is failing.‬

‭Trail of Bits‬ ‭11‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/imports/resolveLibrary.ts#L56-L60

‭Recommendations‬
‭Short term, update the‬‭resolveLibrary‬‭function to consider‬‭.func‬‭files as FunC source‬
‭files.‬

‭Long term, expand the unit test cases to test all the edge cases.‬

‭Trail of Bits‬ ‭12‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭2. Circular dependencies in traits would crash the Tact compiler‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-2‬

‭Target:‬‭src/types/resolveDescriptors.ts‬

‭Description‬
‭The contract and traits dependency resolver crashes the compiler when there are circular‬
‭dependencies in traits.‬

‭The‬‭processType‬‭function in the‬‭resolveDescriptors‬‭function checks whether there‬
‭are any circular dependencies in traits inherited by a contract by keeping track of‬
‭intermediate traits in the‬‭processing‬‭variable:‬

‭function‬‭processType(name:‬‭string‬‭)‬‭{‬
‭// Check if processed‬
‭if‬‭(processed.has(name))‬‭{‬

‭return‬‭;‬
‭}‬
‭if‬‭(processing.has(name))‬‭{‬

‭throwCompilationError(‬
‭̀Circular dependency detected for type‬‭"‬‭${‬‭name‬‭}‬‭"`‬‭,‬
‭types.get(name)!.ast.loc,‬

‭);‬
‭}‬
‭processing.has(name);‬

‭// Process dependencies first‬
‭const‬‭dependencies‬‭=‬‭Array‬‭.‬‭from‬‭(types.values()).filter((v)‬‭=>‬

‭v.traits.find((v2)‬‭=>‬‭v2.name‬‭===‬‭name),‬
‭);‬
‭for‬‭(‬‭const‬‭d‬‭of‬‭dependencies)‬‭{‬

‭processType(d.name);‬
‭}‬

‭// Copy traits‬
‭copyTraits(types.get(name)!);‬

‭// Mark as processed‬
‭processed.add(name);‬
‭processing.‬‭delete‬‭(name);‬

‭}‬

‭Figure 2.1: The‬‭processType‬‭function‬
‭(‬‭tact/src/types/resolveDescriptors.ts#L1773–L1800‬‭)‬

‭Trail of Bits‬ ‭13‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L1773-L1800

‭However, as shown in the highlighted line in figure 2.1, the trait being processed is not‬
‭added to the‬‭processing‬‭list, and because of this,‬‭the‬‭processType‬‭function keeps‬
‭calling itself recursively indefinitely if there are circular dependencies in the traits, and the‬
‭Tact compiler eventually crashes with the‬‭Maximum‬‭call‬‭stack‬‭size‬‭exceeded‬‭error.‬

‭Exploit Scenario‬
‭Alice pushes the following Tact code to her remote Git repository, and it crashes her CI/CD‬
‭pipeline:‬

‭trait‬‭A with B {}‬
‭trait‬‭B with A {}‬

‭contract‬‭Test‬‭with‬‭A‬‭{}‬

‭Figure 2.2: A contract with a circular trait dependency‬

‭Recommendations‬
‭Short term, replace the highlighted line in figure 2.1 with the‬‭processing.add(name)‬
‭statement to track intermediate traits correctly and detect circular dependencies.‬

‭Long term, improve the test suite to include test cases for all the errors thrown by the‬
‭compiler.‬

‭Trail of Bits‬ ‭14‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭3. Symbolic links can be used to bypass path restrictions‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Access Controls‬ ‭Finding ID: TOB-TACT-3‬

‭Target:‬‭src/vfs/createNodeFileSystem.ts‬

‭Description‬
‭The filesystem functions that read and write files do not check for symbolic links. This‬
‭makes it possible for a user with the right permissions to import files outside the current‬
‭root path or overwrite arbitrary files.‬

‭When the‬‭readFile‬‭and‬‭writeFile‬‭functions are defined‬‭in‬
‭createNodeFileSystem.ts‬‭, the default flags are used‬‭for‬‭fs.readFileSync‬‭and‬
‭fs.writeFileSync‬‭calls. This means that when a file‬‭is read, the file will be opened, or an‬
‭exception will be thrown if it does not exist. When a file is written to, the default‬‭“w”‬‭flag‬
‭creates the file if it does not exist or opens and truncates the existing file.‬

‭The only access control check performed in both cases verifies that the file’s location is‬
‭inside the current root path for the compilation. This check is passed when a symbolic link‬
‭is placed inside the root path, and since the link destination is not verified, any file could be‬
‭read or written to.‬

‭export‬‭function‬‭createNodeFileSystem(‬
‭root:‬‭string,‬
‭readonly:‬‭boolean‬‭=‬‭true‬‭,‬

‭):‬‭VirtualFileSystem‬‭{‬
‭let‬‭normalizedRoot‬‭=‬‭path.normalize(root);‬
‭if‬‭(!normalizedRoot.endsWith(path.sep))‬‭{‬

‭normalizedRoot‬‭+=‬‭path.sep;‬
‭}‬
‭return‬‭{‬

‭root:‬‭normalizedRoot,‬
‭exists(filePath:‬‭string):‬‭boolean‬‭{‬

‭if‬‭(!filePath.startsWith(normalizedRoot))‬‭{‬
‭throw‬‭new‬‭Error(‬

‭̀Path‬‭'${filePath}'‬‭is‬‭outside‬‭of‬‭the‬‭root‬‭directory‬
‭'${normalizedRoot}'‬‭̀,‬

‭);‬
‭}‬
‭return‬‭fs.existsSync(filePath);‬

‭},‬
‭resolve(...filePath)‬‭{‬

‭return‬‭path.normalize(path.resolve(normalizedRoot,‬‭...filePath));‬

‭Trail of Bits‬ ‭15‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭},‬
‭readFile(filePath)‬‭{‬

‭if‬‭(!filePath.startsWith(normalizedRoot))‬‭{‬
‭throw‬‭new‬‭Error(‬

‭̀Path‬‭'${filePath}'‬‭is‬‭outside‬‭of‬‭the‬‭root‬‭directory‬
‭'${normalizedRoot}'‬‭̀,‬

‭);‬
‭}‬
‭return‬‭fs.readFileSync(filePath);‬

‭},‬
‭writeFile(filePath,‬‭content)‬‭{‬

‭if‬‭(readonly)‬‭{‬
‭throw‬‭new‬‭Error(‬‭"File system is readonly"‬‭);‬

‭}‬
‭if‬‭(!filePath.startsWith(normalizedRoot))‬‭{‬

‭throw‬‭new‬‭Error(‬
‭̀Path‬‭'${filePath}'‬‭is‬‭outside‬‭of‬‭the‬‭root‬‭directory‬

‭'${normalizedRoot}'‬‭̀,‬
‭);‬

‭}‬

‭mkdirp.sync(path.dirname(filePath));‬
‭fs.writeFileSync(filePath,‬‭content);‬

‭},‬
‭};‬

‭}‬

‭Figure 3.1: The‬‭createNodeFileSystem‬‭function‬
‭(‬‭tact/src/vfs/createNodeFileSystem.ts#L6–L49‬‭)‬

‭Exploit Scenario‬
‭Bob distributes a malicious Tact project in GitHub, where one of the output files is a‬
‭symbolic link to‬‭~/.ssh/id_ed25519‬‭. When Alice compiles‬‭this project, her default-named‬
‭SSH private keys are overwritten.‬

‭Recommendations‬
‭Short term, either add a check for symbolic links that ensures their target paths are within‬
‭the project root directory when opening files, or completely disallow symbolic links.‬

‭Long term, improve the filesystem test suite to include test cases for all platform-specific‬
‭behavior and exceptional cases mentioned in the Node.js documentation.‬

‭Trail of Bits‬ ‭16‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/vfs/createNodeFileSystem.ts#L6-L49

‭4. Tact grammar does not handle Unicode correctly‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-4‬

‭Target:‬‭src/grammar/grammar.ohm‬

‭Description‬
‭Unicode is a complex encoding standard. Some control characters, such as all the newline‬
‭character alternatives, are not correctly handled in the Tact grammar. Additionally, it is‬
‭possible to alter the source code visualization using Unicode right-to-left and left-to-right‬
‭overrides, causing users and developers to be unaware of potentially dangerous code.‬

‭The Tact grammar defines several line terminators: CR (‬‭\u000D‬‭), LF (‬‭\u000A‬‭), LS (‬‭\u2028‬‭),‬
‭and PS (‬‭\u2029‬‭).‬

‭lineTerminator = "\n" | "\r" | "\u2028" | "\u2029"‬

‭Figure 4.1: The‬‭lineTerminator‬‭definition, lacking‬‭some mandatory breaks‬
‭(‬‭tact/src/grammar/grammar.ohm#L406‬‭)‬

‭However,‬‭Unicode Standard Annex #14‬‭also defines FF‬‭(‬‭\u000C‬‭) and VT (‬‭\u000B‬‭) as‬
‭mandatory breaks. Some editors (such as Visual Studio Code; figure 4.2a) show the control‬
‭characters, but some might not (such as a terminal; figure 4.2b), which can be misleading‬
‭for the user or developer.‬

‭a)‬ ‭b)‬

‭Figure 4.2: An example of code that displays differently depending on the editor used‬

‭Trail of Bits‬ ‭17‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L406
https://www.unicode.org/reports/tr14/tr14-32.html

‭The same misleading behavior can be reproduced using right-to-left (‬‭\u202E‬‭) and‬
‭left-to-right (‬‭\u202D‬‭) overrides. Exploiting these‬‭text direction changes makes it easier for‬
‭malicious developers to hide unexpected behavior in clear sight.‬

‭Figure 4.3 shows an example of a contract that can show different operations depending‬
‭on the editor used. This is a visualization issue; the compiler is unaffected, and the‬
‭generated FunC code follows the correct logic.‬

‭a)‬ ‭b)‬

‭Figure 4.3: An example of code exploiting right-to-left override and left-to-right override control‬
‭characters‬

‭Exploit Scenario‬
‭Bob wants to deploy a malicious contract that intentionally miscalculates fees to steal‬
‭jettons from the contract users. To gain people’s trust, he makes a blog post showing the‬
‭contract code and explaining how it works. Since web browsers can understand and‬
‭process Unicode strings, the code shown is not what is actually compiled, and people can‬
‭still download and verify that the output bag of cells matches Bob’s.‬

‭Recommendations‬
‭Short term, follow‬‭Unicode Technical Standard #55‬‭(“Unicode Source Code Handling”) and‬
‭ensure that all problematic cases are handled correctly.‬

‭Long term, improve the test suite to include test cases for Unicode ambiguities.‬

‭Trail of Bits‬ ‭18‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://www.unicode.org/reports/tr55/

‭5. No validation of shift operator arguments‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-5‬

‭Target:‬‭src/types/resolveExpression.ts‬

‭Description‬
‭The Tact compiler does not validate that the shift operator argument is less than 257. The‬
‭FunC compiler throws an error for the use of an invalid shift operator argument.‬

‭The Tact compiler resolves all the types and ensures that the operands of all the operators‬
‭are of the correct type. However, it does not check the bounds of the operand values, so it‬
‭could miss some trivial bugs that would then be caught by the FunC compiler or only at‬
‭runtime.‬

‭get fun hello1(src: Int): Int {‬
‭return src << 34605176784551 & 32769;‬

‭}‬

‭Figure 5.1: A sample function with an invalid shift operator argument‬

‭Recommendations‬
‭Short term, implement a bounds check for shift operator arguments to ensure that the‬
‭operation does not result in an unexpected value.‬

‭Long term, consider having the compiler catch trivial runtime errors to improve the‬
‭developer experience and security of the codebase.‬

‭Trail of Bits‬ ‭19‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭6. Incorrect use of the JavaScript map function for executing side effects‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-6‬

‭Target:‬‭src/grammar/rename.ts‬

‭Description‬
‭The‬‭renameModuleItems‬‭function of the‬‭rename.ts‬‭file‬‭sorts the attributes in the AST for‬
‭Tact functions, traits, and contracts with the‬‭map‬‭JavaScript function, which does not update‬
‭the objects in place.‬

‭The‬‭renameModuleItems‬‭function of the‬‭rename.ts‬‭file‬‭is used to canonicalize the Tact‬
‭code item names for comparison of two code files. The comparison function expects the‬
‭renameModuleItems‬‭function to return a sorted array‬‭of items with sorted attributes for‬
‭each item object:‬

‭public‬‭renameModuleItems(items:‬‭AstModuleItem‬‭[]):‬‭AstModuleItem[]‬‭{‬
‭// Give new names to module-level elements.‬
‭let‬‭renamedItems‬‭=‬‭items.map((item)‬‭=>‬‭this‬‭.changeItemName(item));‬

‭if‬‭(‬‭this‬‭.sort)‬‭{‬
‭renamedItems.map((item)‬‭=>‬‭this‬‭.sortAttributes(item));‬

‭}‬

‭// Apply renaming to the contents of these elements.‬
‭renamedItems‬‭=‬‭renamedItems.map((item)‬‭=>‬

‭this‬‭.renameModuleItemContents(item),‬
‭);‬

‭return‬‭this‬‭.sort‬‭?‬‭this‬‭.sortModuleItems(renamedItems)‬‭:‬‭renamedItems;‬
‭}‬

‭Figure 6.1: The‬‭renameModuleItems‬‭function in the‬‭rename.ts‬‭file‬
‭(‬‭tact/src/grammar/rename.ts#L114–L128‬‭)‬

‭However, as shown in the highlighted line in figure 5.1, the returned value of the‬‭map‬
‭function call is not stored in the‬‭renamedItems‬‭variable,‬‭which discards any updates made‬
‭to the‬‭renamedItems‬‭array items, resulting in unsorted‬‭attributes in the code items. These‬
‭unsorted attributes could cause the comparator to return false negatives for the same‬
‭code and could allow users to pass the plagiarism test by changing the order of attributes‬
‭in the code.‬

‭Trail of Bits‬ ‭20‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/rename.ts#L114-L128

‭This issue cannot be exploited because of the use of the‬‭Array.sort‬‭function in the‬
‭sortAttributes‬‭function in the‬‭sort.ts‬‭file. The‬‭Array.sort‬‭function sorts the array in‬
‭place; therefore, the‬‭renamedItems‬‭array items have‬‭sorted attributes.‬

‭Recommendations‬
‭Short term, replace the‬‭map‬‭function with the‬‭forEach‬‭function.‬

‭Long term, refactor the codebase to use non-mutating methods to avoid unexpected side‬
‭effects and confusion.‬

‭Trail of Bits‬ ‭21‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭7. Ohm library limitation for nested expressions‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TACT-7‬

‭Target:‬‭src/grammar/grammar.ohm‬

‭Description‬
‭The Tact compiler uses the Ohm parsing toolkit to implement the source code parser. The‬
‭Ohm library uses recursion to parse nested items in expressions and throws a‬
‭RangeError:‬‭Maximum‬‭call‬‭stack‬‭size‬‭exceeded‬‭error‬‭for deeply nested expressions.‬
‭For example, the expression shown in the following image throws the error and crashes‬
‭the compiler:‬

‭((‬
‭((((((((((((((((1)))‬
‭)))))))))))))))))))))))))))))))))‬

‭Figure 7.1: An example expression that would cause a compiler error‬

‭The above expression is a valid Tact code expression and should be parsed correctly.‬
‭However, because of the limitations of the Ohm library, the Tact compiler does not support‬
‭it.‬

‭Recommendations‬
‭Short term, document the limitations of the Ohm library for deeply nested expressions.‬

‭Trail of Bits‬ ‭22‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭23‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭24‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭25‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭C. Code Quality Findings‬

‭The following findings are not associated with any specific vulnerabilities. However,‬
‭addressing them will enhance code readability and may prevent the introduction of‬
‭vulnerabilities in the future.‬

‭●‬ ‭One of the project’s dependencies has a known vulnerability.‬‭Running‬‭npx‬‭yarn‬
‭audit‬‭on the repository shows that the‬‭ajv-cli‬‭package‬‭used for validating the‬
‭linting schema depends on a vulnerable version of the‬‭fast-json-patch‬‭package.‬

‭●‬ ‭The TypeScript compiler can be configured to be stricter.‬‭The‬‭tsconfig.json‬
‭configuration file does not enforce several options to increase the generated code’s‬
‭robustness and reliability. An example of a stricter‬‭tsconfig.json‬‭file can be‬
‭found in the “‬‭recommendations for‬‭TSConfig‬‭bases‬‭”‬‭repository. The strictest‬
‭configuration should be used, and all errors and warnings that arise from the‬
‭process must be addressed.‬

‭●‬ ‭There are several instances of unused variables and function parameters.‬
‭Compiling Tact code with the stricter rule set reveals several cases of unused‬
‭variables in the following files:‬

‭○‬ ‭src/abi/global.ts‬

‭○‬ ‭src/abi/map.ts‬

‭○‬ ‭src/bindings/typescript/serializers.ts‬

‭○‬ ‭src/bindings/typescript/writeStruct.ts‬

‭○‬ ‭src/generator/writers/writeAccessors.ts‬

‭○‬ ‭src/generator/writers/writeContract.ts‬

‭○‬ ‭src/generator/writers/writeSerialization.ts‬

‭○‬ ‭src/types/resolveDescriptors.ts‬

‭○‬ ‭src/types/resolveExpression.ts‬

‭●‬ ‭Some built-in Ohm rules are redefined in the grammar.‬‭The‬‭letterAscii‬‭,‬
‭letterAsciiUC‬‭, and‬‭letterAsciiLC‬‭rules‬‭are equivalent‬‭to the built-in‬‭letter‬‭,‬
‭upper‬‭, and‬‭lower‬‭rules, respectively.‬

‭●‬ ‭There are unused and duplicated rules in the Tact grammar.‬‭The‬
‭letterDigitUnderscore‬‭rule is unused and is equivalent‬‭to the‬‭typeIdPart‬‭and‬
‭idPart‬‭rules.‬

‭Trail of Bits‬ ‭26‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tsconfig/bases/blob/main/bases/strictest.json
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L264
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L231
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L269

‭●‬ ‭There is a misleading error message in the Tact grammar.‬‭The‬
‭checkVariableName‬‭function is used to validate several‬‭attribute names in‬
‭grammar.ts‬‭. If the validation fails, the error message‬‭mentions “variable name”‬
‭regardless of the origin of the error. This can be confusing for users.‬

‭●‬ ‭The return type of the‬‭buildFieldDescription‬‭function‬‭does not explicitly‬
‭indicate all fields.‬‭The‬‭FieldDescription‬‭struct returned‬‭by the function lacks an‬
‭explicit‬‭index‬‭key, and the order of the returned‬‭fields does not match the‬
‭definition.‬

‭●‬ ‭The division functions do not check a precondition; instead, they rely on the‬
‭caller.‬‭As mentioned in the comments for the‬‭divFloor‬‭and‬‭modFloor‬‭functions,‬
‭they do not check for cases when the divisor is zero. This is not an issue in the‬
‭current state of the codebase, but it can introduce issues in the future if a developer‬
‭adds a new use case where the divisor is not checked.‬

‭●‬ ‭The‬‭buildConstantDescription‬‭function does not run‬‭its struct field count‬
‭before traversing the struct.‬‭When passed a struct,‬‭it loops over all fields before‬
‭checking for the existence of at least one field.‬‭This check‬‭should be performed‬
‭before the iterations.‬

‭Trail of Bits‬ ‭27‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/checkVariableName.ts#L4-L11
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ts
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L385-L413
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L132-L140
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L151-L156
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L415-L613
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L517-L522

‭D. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭From January 2 to January 3, 2025, Trail of Bits reviewed the fixes and mitigations‬
‭implemented by the TON Studio team for the issues identified in this report. We reviewed‬
‭each fix to determine its effectiveness in resolving the associated issue.‬

‭Several of the fixes also improve the test suite, adding cases with the mentioned exploit‬
‭scenarios and new examples. The Unicode character handling was not changed; however,‬
‭the team plans on changing the Unicode support for Tact in the long term. The Ohm library‬
‭nesting limit (‬‭TOB-TACT-7‬‭) was not solved, as it is‬‭outside of the TON Studio codebase, but‬
‭the Tact compiler documentation was updated to reflect the issue. Finally,‬‭TOB-TACT-5‬
‭requires a better solution for the general case; however, the proposed solution works for‬
‭the cases in which the bit shift operand is constant or can be calculated as a constant.‬

‭In summary, of the seven issues described in this report, TON Studio has resolved four‬
‭issues, has partially resolved one issue, and has not resolved the remaining two issues. For‬
‭additional information, please see the Detailed Fix Review Results below.‬

‭ID‬ ‭Title‬ ‭Severity‬ ‭Status‬

‭1‬ ‭The Tact compiler does not support FunC files with‬
‭.func extension‬

‭Informational‬ ‭Resolved‬

‭2‬ ‭Circular dependencies in traits would crash the‬
‭Tact compiler‬

‭Medium‬ ‭Resolved‬

‭3‬ ‭Symbolic links can be used to bypass path‬
‭restrictions‬

‭Low‬ ‭Resolved‬

‭4‬ ‭Tact grammar does not handle Unicode correctly‬ ‭Low‬ ‭Unresolved‬

‭5‬ ‭No validation of shift operator arguments‬ ‭Informational‬ ‭Partially‬
‭Resolved‬

‭6‬ ‭Incorrect use of the JavaScript map function for‬
‭executing side effects‬

‭Informational‬ ‭Resolved‬

‭Trail of Bits‬ ‭28‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭7‬ ‭Ohm library limitation for nested expressions‬ ‭Informational‬ ‭Unresolved‬

‭Detailed Fix Review Results‬
‭TOB-TACT-1: The Tact compiler does not support FunC files with .func extension‬
‭Resolved in‬‭commit‬‭abe8746‬‭. The‬‭.func‬‭extension was‬‭added to the filename check, and a‬
‭new test case was added to ensure that‬‭.func‬‭type‬‭files are imported correctly.‬

‭TOB-TACT-2: Circular dependencies in traits would crash the Tact compiler‬
‭Resolved in‬‭commit‬‭d12cf94‬‭. The current trait is now‬‭added to the processing list, and the‬
‭circular dependency is now detected. A new test case was added to check for circular‬
‭dependencies.‬

‭TOB-TACT-3: Symbolic links can be used to bypass path restrictions‬
‭Resolved in‬‭commit‬‭40a6342‬‭. A new function to check‬‭filepaths for symbolic links and‬
‭disallow them was added to‬‭createNodeFilesystem.ts‬‭.‬‭All read and write file accesses‬
‭in the‬‭createNodeFileSystem‬‭function are now validated.‬‭Additionally, test files and test‬
‭cases were added to check for symbolic link imports.‬

‭TOB-TACT-4: Tact grammar does not handle Unicode correctly‬
‭Unresolved. No changes were made to the project to address this issue.‬

‭The client provided the following context for this finding’s fix status:‬

‭We acknowledge possible Unicode exploits via text editors and most likely our long term‬
‭goal will be ban Unicode from Tact source code except comments and string literals.‬

‭TOB-TACT-5: No validation of shift operator arguments‬
‭Partially resolved in‬‭commit‬‭32dbaa8‬‭. The implemented‬‭fix works only for constant‬
‭expressions, without variables. However, the team stated that proper constant propagation‬
‭static analysis will be included in the next Tact release. Tests were also added for constant‬
‭bit shifts.‬

‭TOB-TACT-6: Incorrect use of the JavaScript map function for executing side effects‬
‭Resolved in‬‭commit‬‭00bf680‬‭. The‬‭renameModuleItems‬‭function was refactored to fix the‬
‭issue, and now the‬‭renamedItems‬‭map is correctly sorted‬‭when the flag is set.‬

‭TOB-TACT-7: Ohm library limitation for nested expressions‬
‭Unresolved. As this is a limitation in the Ohm library, it has not been resolved. However, the‬
‭team documented the issue in the‬‭Expressions‬‭section‬‭of Tact main documentation.‬

‭Trail of Bits‬ ‭29‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/tact-lang/tact/commit/abe8746d26aa968c7d9d19e30f3e49524d508f1d
https://github.com/tact-lang/tact/commit/d12cf9427b5e96a4c14604c058b59e9f610e33e8
https://github.com/tact-lang/tact/commit/40a6342604ae3e36c662681739df5e1e6991e389
https://github.com/tact-lang/tact/commit/32dbaa8d84d200903c2c3321cc168707b7b832b7
https://github.com/tact-lang/tact/commit/00bf680218ae37f05a6f019ca2529a7a43642953
https://docs.tact-lang.org/book/expressions/

‭E. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭30‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭31‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2025 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information;‬‭it is licensed to TON‬
‭Studio under the terms of the project statement of work and has been made public at TON‬
‭Studio’s request.‬‭Material within this report may‬‭not be reproduced or distributed in part‬
‭or in whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭32‬ ‭TON Studio Tact Compiler‬
‭PUBLIC‬ ‭Security Assessment‬

https://github.com/trailofbits/publications

