TRAL
BT

TON Studio Tact Compiler

Security Assessment

January 23, 2025

Prepared for:
Anton Trunov
TON Studio

Prepared by: Tarun Bansal, Guillermo Larregay, and Bo Henderson

Table of Contents

Table of Contents 1
Project Summary 2
Executive Summary 3
Project Goals 5
Project Targets 6
Project Coverage 7
Codebase Maturity Evaluation 8
Summary of Findings 10
Detailed Findings 11
1. The Tact compiler does not support FuncC files with .func extension 11

2. Circular dependencies in traits would crash the Tact compiler 13

3. Symbolic links can be used to bypass path restrictions 15

4. Tact grammar does not handle Unicode correctly 17

5. No validation of shift operator arguments 19

6. Incorrect use of the JavaScript map function for executing side effects 20

7. 0hm library limitation for nested expressions 22

A. Vulnerability Categories 23
B. Code Maturity Categories 25
C. Code Quality Findings 26
D. Fix Review Results 28
Detailed Fix Review Results 29

E. Fix Review Status Categories 30
About Trail of Bits 31
Notices and Remarks 32
Trail of Bits 1 TON Studio Tact Compiler

PUBLIC Security Assessment

Project Summary

Contact Information
The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Tarun Bansal, Consultant Guillermo Larregay, Consultant
tarun.bansal@trailofbits.com guillermo.larregay@trailofbits.com

Bo Henderson, Consultant
bo.henderson®@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 12, 2024 Pre-project kickoff call

September 27, 2024 Status update meeting #1

October 8, 2024 Status update meeting #2

October 15, 2024 Status update meeting #3

October 21, 2024 Delivery of report draft

October 21, 2024 Report readout meeting

January 23, 2025 Delivery of final comprehensive report

January 28, 2025 Addition of fix review appendix

Trail of Bits 2 TON Studio Tact Compiler

PUBLIC Security Assessment

Executive Summary

Engagement Overview

The TON Studio engaged Trail of Bits to review the security of the Tact compiler. The Tact
language is a high-level programming language for the TON virtual machine. It is compiled
into FunC and bytecode that runs on the TON virtual machine.

A team of three consultants conducted the review from September 18 to October 18, 2024,
for a total of eight engineer weeks of effort. Our testing efforts focused on identifying flaws
that could cause incorrect semantic analysis or enable arbitrary code execution or key
extraction. With full access to source code and documentation, we performed static and
dynamic testing of the codebase using automated and manual processes.

Observations and Impact

The Tact compiler codebase is broken into well-defined components and is easy to
navigate. However, some files include a lot of code with a complex code flow involving
multiple nested control flow structures, such as the program writer component. Such a
complex codebase makes it difficult to follow the data flow and understand the security
properties of the project.

One medium-severity issue highlights the test suite’s inefficiency in capturing logic issues. A
comprehensive and efficient test suite could also discover other low- and
informational-severity issues.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the TON Studio take the following steps:

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Improve and expand the test suite. A complex system such as the Tact compiler
should be thoroughly tested, considering normal usage flows as well as specific or
edge cases. The fuzz test suite can also be expanded to test the compiler grammar,
optimizer, and writers with well-defined invariants. A strong test suite included as
part of the CI/CD pipeline will also help detect bugs earlier.

Trail of Bits 3 TON Studio Tact Compiler
PUBLIC Security Assessment

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 0 Access Controls 1
Medium 1 Data Validation 6
Low 2
Informational 4
Undetermined 0

Trail of Bits 4 TON Studio Tact Compiler

PUBLIC Security Assessment

Project Goals

The engagement was scoped to provide a security assessment of the TON Studio’s Tact
compiler. Specifically, we sought to answer the following non-exhaustive list of questions:

e Isit possible to generate a malicious Tact file that crashes the compiler or generates
FunC code that is not compilable?

e Isit possible to alter the host’s filesystem outside the current project root directory?
Can a malicious project leak data from the host system?

e Isit possible to generate an incorrect or invalid program that passes syntactic and
semantic checks?

e Are there bugs in the Tact compiler that could enable arbitrary code execution?

e Isit possible to write visibly correct Tact code that compiles to unexpected FunC
code?

e Can the optimizer introduce bugs or change the code behavior?

e Does the compiler write correct FunC code files?

Trail of Bits 5 TON Studio Tact Compiler
PUBLIC Security Assessment

Project Targets

The engagement involved a review and testing of the following target.

Tact Compiler

Repository https://github.com/tact-lang/tact/
Version 0106ea14857bcf3c40dd10135243d0de96012871
Type TypeScript
Platform TON
Trail of Bits 6 TON Studio Tact Compiler

PUBLIC Security Assessment

https://github.com/tact-lang/tact/

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

Manual review and analysis of the provided grammar and semantics

Manual review of the complete compilation flow, from Tact to FunC, from FunC to
Fift, and the bag of cells representation of the output

Manual review of the different parts of the Tact abstract syntax tree (AST)
generation, analysis and optimization, and translation to FunC

Basic automated fuzz testing of the optimizer and the FunC interpreter

Static analysis of the compiler’s TypeScript code files

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

The optimizer is not yet integrated into the main compiler code. The changes to the
compiler code that are needed to add the optimizer to the data flow could affect the
code generation or introduce bugs.

The individual AST and code generation functions were reviewed and analyzed, but
since the code relies on recursive traversal of structures, it was not tested with all
possible edge cases.

The FunC compiler was not part of the scope of the audit. Therefore, any bugs or
unexpected behaviors that could be present in the FunC compilation were out of
scope.

Third-party libraries used as dependencies were out of scope.

The standard library code and any other Tact files were not reviewed.

Trail of Bits 7 TON Studio Tact Compiler
PUBLIC Security Assessment

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The project makes minimal use of arithmetic operations Satisfactory
for constant evaluation. We identified no issues in
relation to arithmetic overflows, division by zero, or
precision loss.

Auditing The Tact compiler emits informative log messages at Moderate
appropriate places. The set of error messages is large,
and the information they contain is descriptive.

However, we found the use of “internal compiler errors”
to be confusing; we recommend documenting when an
error is meant to be an internal compiler error and what
impact it has on the code. For example, if the Tact code
references an undefined type, then the compiler throws
an internal compiler error instead of a normal error.

Complexity The codebase is generally well organized, with modular Moderate
Management components and a clear file structure. Many of the

source files are short and easy to read. However, some

files show several instances of code repetition.

Larger modules could be refactored into several files or
additional functions to improve legibility and reduce code
repetition.

Some patterns, such as the recursive processing of the
AST nodes, are prone to errors and can be more
challenging for a new collaborator to understand.

Running static analysis tools on the code could also help
detect and fix code smells, as mentioned in the Code
Quality Findings section.

Documentation The documentation available on the project's website is Weak

Trail of Bits 8 TON Studio Tact Compiler
PUBLIC Security Assessment

Testing and
Verification

Trail of Bits
PUBLIC

targeted toward Tact developers. Other than a high-level
description of the system in CONTRIBUTING.md, there is
no specific documentation for the compiler modules and
compilation stages.

The code could use more comments, particularly in the
bigger files and complex functions.

The provided test suite consists of 895 unit test cases.
However, given the size and complexity of the compiler
codebase, it is not suitable for the project. The test suite
can be improved to cover all the features, as well as
more Tact code examples and edge cases, such as the
ones described in the Detailed Findings section. The
coverage report generation component is broken, so
there is no measurable information about the test suite’s
efficiency.

Weak

9 TON Studio Tact Compiler

Security Assessment

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 The Tact compiler does not support FuncC files Data Validation Informational
with .func extension

2 Circular dependencies in traits would crash the Data Validation Medium
Tact compiler

3 Symbolic links can be used to bypass path Access Controls Low
restrictions

4 Tact grammar does not handle Unicode correctly Data Validation Low
5 No validation of shift operator arguments Data Validation Informational
6 Incorrect use of the JavaScript map function for Data Validation Informational

executing side effects

7 Ohm library limitation for nested expressions Data Validation Informational

Trail of Bits 10 TON Studio Tact Compiler
PUBLIC Security Assessment

Detailed Findings

1. The Tact compiler does not support FunC files with .func extension

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-TACT-1

Target: src/imports/resolvelibrary.ts

Description
The Tact language compiler considers a source file with the . func extension to be a Tact

file and appends the . tact extension to the filename. As a result, importing a . func file
throws an exception.

The Tact language documentation mentions that a . fc or . func file can be imported with
the import keyword. However, the resolvelLibrary function does not check for the

. func extension while deciding whether a source file is a Tact file or a FunC file. It appends
the . tact extension to any file imported that does not have a . tact or . fc extension. The
file with the . tact extension appended to it does not exist, which results in a project
compilation failure with an exception:

let importName = args.name;

const kind: "tact" | "func" = importName.endsWith(".fc") ? "func" : "tact";

if (!importName.endsWith(".tact") && !importName.endsWith(".fc")) {
importName = importName + ".tact";

}

Figure 1.1: A snippet of the resolvelLibrary function
(tact/src/imports/resolvelibrary. ts#L56-L60)

Additionally, the exception message shows only the actual filename mentioned in the

import statement, which does not help the developer understand the reason for the
compilation failure.

Exploit Scenario

Alice creates a Tact project and tries to import an old FunC source file named old. func in
her Tact file named main.tact. The project compilation fails with the exception, Could
not resolve import "./o0ld.func" inmain.tact. Alice sees that the old. func file
exists and cannot understand why the compilation is failing.

Trail of Bits 11 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/imports/resolveLibrary.ts#L56-L60

Recommendations
Short term, update the resolvelLibrary function to consider . func files as FunC source

files.

Long term, expand the unit test cases to test all the edge cases.

TON Studio Tact Compiler

Trail of Bits 12
Security Assessment

PUBLIC

2. Circular dependencies in traits would crash the Tact compiler
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-TACT-2

Target: src/types/resolveDescriptors.ts

Description
The contract and traits dependency resolver crashes the compiler when there are circular
dependencies in traits.

The processType function in the resolveDescriptors function checks whether there
are any circular dependencies in traits inherited by a contract by keeping track of
intermediate traits in the processing variable:

function processType(name: string) {
// Check if processed
if (processed.has(name)) {
return;
}
if (processing.has(name)) {
throwCompilationError(
‘Circular dependency detected for type "S{name}"",
types.get(name)!.ast.loc,
);
}

processing.has(name) ;

// Process dependencies first

const dependencies = Array.from(types.values()).filter((v) =>
v.traits.find((v2) => v2.name === name),

);

for (const d of dependencies) {
processType(d.name) ;

}

// Copy traits
copyTraits(types.get(name)!);

// Mark as processed
processed.add(name) ;
processing.delete(name);

}
Figure 2.1: The processType function
(tact/src/types/resolveDescriptors.ts#L1773-L1860)
Trail of Bits 13 TON Studio Tact Compiler

PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L1773-L1800

However, as shown in the highlighted line in figure 2.1, the trait being processed is not
added to the processing list, and because of this, the processType function keeps
calling itself recursively indefinitely if there are circular dependencies in the traits, and the
Tact compiler eventually crashes with the Maximum call stack size exceeded error.

Exploit Scenario
Alice pushes the following Tact code to her remote Git repository, and it crashes her CI/CD
pipeline:

trait A with B {}
trait B with A {}

contract Test with A {}
Figure 2.2: A contract with a circular trait dependency
Recommendations

Short term, replace the highlighted line in figure 2.1 with the processing.add(name)
statement to track intermediate traits correctly and detect circular dependencies.

Long term, improve the test suite to include test cases for all the errors thrown by the
compiler.

Trail of Bits 14 TON Studio Tact Compiler
PUBLIC Security Assessment

3. Symbolic links can be used to bypass path restrictions
Severity: Low Difficulty: Low
Type: Access Controls Finding ID: TOB-TACT-3

Target: src/vfs/createNodeFileSystem.ts

Description

The filesystem functions that read and write files do not check for symbolic links. This
makes it possible for a user with the right permissions to import files outside the current
root path or overwrite arbitrary files.

When the readFile and writeFile functions are defined in

createNodeFileSystem. ts, the default flags are used for fs.readFileSync and
fs.writeFileSync calls. This means that when a file is read, the file will be opened, or an
exception will be thrown if it does not exist. When a file is written to, the default “w" flag
creates the file if it does not exist or opens and truncates the existing file.

The only access control check performed in both cases verifies that the file's location is
inside the current root path for the compilation. This check is passed when a symbolic link
is placed inside the root path, and since the link destination is not verified, any file could be
read or written to.

export function createNodeFileSystem(
root: string,
readonly: boolean = true,
): VirtualFileSystem {
let normalizedRoot = path.normalize(root);
if ('normalizedRoot.endsWith(path.sep)) {
normalizedRoot += path.sep;

}
return {
root: normalizedRoot,
exists(filePath: string): boolean {
if (!filePath.startsWith(normalizedRoot)) {
throw new Error(
‘Path '${filePath}' is outside of the root directory
"$S{normalizedRoot}"' ",
);
}
return fs.existsSync(filePath);
e
resolve(...filePath) {
return path.normalize(path.resolve(normalizedRoot, ...filePath));
Trail of Bits 15 TON Studio Tact Compiler

PUBLIC Security Assessment

H
readFile(filePath) {
if (!'filePath.startsWith(normalizedRoot)) {
throw new Error(
‘Path '${filePath}' is outside of the root directory
"${normalizedRoot}"' ",
);
}
return fs.readFileSync(filePath);

e
writeFile(filePath, content) {

if (readonly) {
throw new Error("File system is readonly");

}
if (!filePath.startsWith(normalizedRoot)) {

throw new Error(
‘Path '${filePath}' is outside of the root directory
"${normalizedRoot}' ",

)
}

mkdirp.sync(path.dirname(filePath));
fs.writeFileSync(filePath, content);

},
3

Figure 3.1: The createNodeFileSystem function
(tact/src/vfs/createNodeFileSystem. ts#L6—L49)

Exploit Scenario

Bob distributes a malicious Tact project in GitHub, where one of the output files is a
symbolic link to ~/ . ssh/id_ed25519. When Alice compiles this project, her default-named
SSH private keys are overwritten.

Recommendations
Short term, either add a check for symbolic links that ensures their target paths are within
the project root directory when opening files, or completely disallow symbolic links.

Long term, improve the filesystem test suite to include test cases for all platform-specific
behavior and exceptional cases mentioned in the Node.js documentation.

Trail of Bits 16 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/vfs/createNodeFileSystem.ts#L6-L49

4. Tact grammar does not handle Unicode correctly
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-TACT-4

Target: src/grammar /grammar .ohm

Description

Unicode is a complex encoding standard. Some control characters, such as all the newline
character alternatives, are not correctly handled in the Tact grammar. Additionally, it is
possible to alter the source code visualization using Unicode right-to-left and left-to-right
overrides, causing users and developers to be unaware of potentially dangerous code.

The Tact grammar defines several line terminators: CR (\u@eeD), LF (\ueeeA), LS (\u2028),
and PS (\u2029).

lineTerminator = "\n" | "\r" | "\u2028" | "\u2029"

Figure 4.1: The 1ineTerminator definition, lacking some mandatory breaks
(tact/src/grammar/grammar.ohm#L406)

However, Unicode Standard Annex #14 also defines FF (\ue80C) and VT (\u@eeB) as
mandatory breaks. Some editors (such as Visual Studio Code; figure 4.2a) show the control
characters, but some might not (such as a terminal; figure 4.2b), which can be misleading
for the user or developer.

message SomeMsg {

SomeMsg {
amount: Int;
}

amount: Int;

contract Tests
a: Int;
// This is a comment
b: Int;

Tests {
a: Int;

init() {
self.a = 0;
}

(msgi SomeMsg) "i. receive(msg: SomeMsg) {
f.a = msg.amount; self.a = msg.amount;

a) b)
Figure 4.2: An example of code that displays differently depending on the editor used

Trail of Bits 17 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L406
https://www.unicode.org/reports/tr14/tr14-32.html

The same misleading behavior can be reproduced using right-to-left (\u202E) and
left-to-right (\u202D) overrides. Exploiting these text direction changes makes it easier for
malicious developers to hide unexpected behavior in clear sight.

Figure 4.3 shows an example of a contract that can show different operations depending
on the editor used. This is a visualization issue; the compiler is unaffected, and the
generated FunC code follows the correct logic.

ige SomeMsg E
amount: Int;
fee: Int;

message SomeMsg {
amount: Int;
fee: Int;

}

ontract Tests {
amount_minus_fee: Int;
init() {
self.amount_minus_fee = 0;

contract Tests {
amount_minus_fee: Int;
init() {
self.amount_minus_fee
}

receive(msg: SomeMsg) {
let x = msg.amount;
let y = msg.fee;
self.amount_minus_fee /*amountk/x - y/*feex/
/*all done!x/;

>(msg: SomeMsg) {

= msg.amount;
y = msg.fee;
self.amount_minus_fee = /% [U+202E]
[u+202D] ; }
}

a) b)

Figure 4.3: An example of code exploiting right-to-left override and left-to-right override control
characters

Exploit Scenario

Bob wants to deploy a malicious contract that intentionally miscalculates fees to steal
jettons from the contract users. To gain people’s trust, he makes a blog post showing the
contract code and explaining how it works. Since web browsers can understand and
process Unicode strings, the code shown is not what is actually compiled, and people can
still download and verify that the output bag of cells matches Bob's.

Recommendations
Short term, follow Unicode Technical Standard #55 (“Unicode Source Code Handling”) and
ensure that all problematic cases are handled correctly.

Long term, improve the test suite to include test cases for Unicode ambiguities.

Trail of Bits 18 TON Studio Tact Compiler
PUBLIC Security Assessment

https://www.unicode.org/reports/tr55/

5. No validation of shift operator arguments
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-TACT-5

Target: src/types/resolveExpression.ts

Description
The Tact compiler does not validate that the shift operator argument is less than 257. The
FunC compiler throws an error for the use of an invalid shift operator argument.

The Tact compiler resolves all the types and ensures that the operands of all the operators
are of the correct type. However, it does not check the bounds of the operand values, so it
could miss some trivial bugs that would then be caught by the FunC compiler or only at
runtime.

get fun hellol(src: Int): Int {
return src << 34605176784551 & 32769;

}
Figure 5.1: A sample function with an invalid shift operator argument

Recommendations
Short term, implement a bounds check for shift operator arguments to ensure that the
operation does not result in an unexpected value.

Long term, consider having the compiler catch trivial runtime errors to improve the
developer experience and security of the codebase.

Trail of Bits 19 TON Studio Tact Compiler
PUBLIC Security Assessment

6. Incorrect use of the JavaScript map function for executing side effects
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-TACT-6

Target: src/grammar/rename.ts

Description

The renameModuleItems function of the rename. ts file sorts the attributes in the AST for
Tact functions, traits, and contracts with the map JavaScript function, which does not update
the objects in place.

The renameModuleItems function of the rename. ts file is used to canonicalize the Tact
code item names for comparison of two code files. The comparison function expects the
renameModuleItems function to return a sorted array of items with sorted attributes for
each item object:

public renameModuleItems(items: AstModuleItem[]): AstModuleItem[] {
// Give new names to module-level elements.
let renamedItems = items.map((item) => this.changeItemName(item));

if (this.sort) {
renamedItems.map((item) => this.sortAttributes(item));

}

// Apply renaming to the contents of these elements.
renamedItems = renamedItems.map((item) =>
this.renameModuleItemContents(item),

)

return this.sort ? this.sortModuleItems(renamedItems) : renamedItems;

Figure 6.1: The renameModuleItems function in the rename. ts file
(tact/src/grammar/rename. ts#L114-L128)

However, as shown in the highlighted line in figure 5.1, the returned value of the map
function call is not stored in the renamedItems variable, which discards any updates made
to the renamedItems array items, resulting in unsorted attributes in the code items. These
unsorted attributes could cause the comparator to return false negatives for the same
code and could allow users to pass the plagiarism test by changing the order of attributes
in the code.

Trail of Bits 20 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact//blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/rename.ts#L114-L128

This issue cannot be exploited because of the use of the Array.sort function in the
sortAttributes functionin the sort. tsfile. The Array.sort function sorts the array in
place; therefore, the renamedItems array items have sorted attributes.

Recommendations
Short term, replace the map function with the forEach function.

Long term, refactor the codebase to use non-mutating methods to avoid unexpected side
effects and confusion.

Trail of Bits 21 TON Studio Tact Compiler
PUBLIC Security Assessment

7. Ohm library limitation for nested expressions
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-TACT-7

Target: src/grammar/grammar .ohm

Description

The Tact compiler uses the Ohm parsing toolkit to implement the source code parser. The
Ohm library uses recursion to parse nested items in expressions and throws a
RangeError: Maximum call stack size exceeded error for deeply nested expressions.
For example, the expression shown in the following image throws the error and crashes
the compiler:

CCCCCCCCCCCeC
))))))))))))))))

(
)
)

~— ~— —~
~— ~— —~
~— ~— —~
~— ~— —~

((
))
))

~— ~— —~
~— ~— —~
~— — —~
~— ~— —~

CCCCCCeC((CC((
(CCCCCCC()))))
))))))))))))

~— A~~~
~— A~~~
~— A~~~
~—~ A~~~
~— A~~~
~— A~~~

(((
1))
)))
Figure 7.1: An example expression that would cause a compiler error

The above expression is a valid Tact code expression and should be parsed correctly.
However, because of the limitations of the Ohm library, the Tact compiler does not support
it.

Recommendations
Short term, document the limitations of the Ohm library for deeply nested expressions.

Trail of Bits 22 TON Studio Tact Compiler

PUBLIC Security Assessment

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

23 TON Studio Tact Compiler
Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

24 TON Studio Tact Compiler
Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Complexity The presence of clear structures designed to manage system complexity,
Management including the separation of system logic into clearly defined functions
Documentation The presence of comprehensive and readable codebase documentation
Testing and The presence of robust testing procedures (e.g., unit tests, integration
Verification tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description
Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

I Weak Many issues that affect system safety were found.

I Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 25 TON Studio Tact Compiler

PUBLIC Security Assessment

C. Code Quality Findings

The following findings are not associated with any specific vulnerabilities. However,
addressing them will enhance code readability and may prevent the introduction of
vulnerabilities in the future.

One of the project’s dependencies has a known vulnerability. Running npx yarn
audit on the repository shows that the ajv-cli package used for validating the
linting schema depends on a vulnerable version of the fast-json-patch package.

The TypeScript compiler can be configured to be stricter. The tsconfig. json
configuration file does not enforce several options to increase the generated code’s
robustness and reliability. An example of a stricter tsconfig. json file can be
found in the “recommendations for TSConfig bases” repository. The strictest
configuration should be used, and all errors and warnings that arise from the
process must be addressed.

There are several instances of unused variables and function parameters.
Compiling Tact code with the stricter rule set reveals several cases of unused
variables in the following files:

o src/abi/global.ts

o src/abi/map.ts

o src/bindings/typescript/serializers.ts

o src/bindings/typescript/writeStruct.ts

o src/generator/writers/writeAccessors.ts

o src/generator/writers/writeContract.ts

o src/generator/writers/writeSerialization.ts
o src/types/resolveDescriptors.ts

o src/types/resolveExpression.ts

Some built-in Ohm rules are redefined in the grammar. The letterAscii,
letterAsciilC, and letterAsciil.C rules are equivalent to the built-in letter,
upper, and lower rules, respectively.

There are unused and duplicated rules in the Tact grammar. The
letterDigitUnderscore ruleis unused and is equivalent to the typeIdPart and
idPart rules.

Trail of Bits 26 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tsconfig/bases/blob/main/bases/strictest.json
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L257-L262
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L264
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L231
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ohm#L269

e There is a misleading error message in the Tact grammar. The
checkVariableName function is used to validate several attribute names in
grammar . ts. If the validation fails, the error message mentions “variable name”
regardless of the origin of the error. This can be confusing for users.

e The return type of the buildFieldDescription function does not explicitly
indicate all fields. The FieldDescription struct returned by the function lacks an
explicit index key, and the order of the returned fields does not match the
definition.

e The division functions do not check a precondition; instead, they rely on the
caller. As mentioned in the comments for the divFloor and modFloor functions,
they do not check for cases when the divisor is zero. This is not an issue in the
current state of the codebase, but it can introduce issues in the future if a developer
adds a new use case where the divisor is not checked.

e ThebuildConstantDescription function does not run its struct field count
before traversing the struct. When passed a struct, it loops over all fields before
checking for the existence of at least one field. This check should be performed
before the iterations.

Trail of Bits 27 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/checkVariableName.ts#L4-L11
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/grammar/grammar.ts
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L385-L413
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L132-L140
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/optimizer/util.ts#L151-L156
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L415-L613
https://github.com/tact-lang/tact/blob/0106ea14857bcf3c40dd10135243d0de96012871/src/types/resolveDescriptors.ts#L517-L522

D. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From January 2 to January 3, 2025, Trail of Bits reviewed the fixes and mitigations
implemented by the TON Studio team for the issues identified in this report. We reviewed
each fix to determine its effectiveness in resolving the associated issue.

Several of the fixes also improve the test suite, adding cases with the mentioned exploit
scenarios and new examples. The Unicode character handling was not changed; however,
the team plans on changing the Unicode support for Tact in the long term. The Ohm library
nesting limit (TOB-TACT-7) was not solved, as it is outside of the TON Studio codebase, but
the Tact compiler documentation was updated to reflect the issue. Finally, TOB-TACT-5
requires a better solution for the general case; however, the proposed solution works for
the cases in which the bit shift operand is constant or can be calculated as a constant.

In summary, of the seven issues described in this report, TON Studio has resolved four
issues, has partially resolved one issue, and has not resolved the remaining two issues. For
additional information, please see the Detailed Fix Review Results below.

ID Title Severity Status

1 The Tact compiler does not support Func files with Informational Resolved
.func extension

2 Circular dependencies in traits would crash the Medium Resolved
Tact compiler

3 Symbolic links can be used to bypass path Low Resolved
restrictions

4 Tact grammar does not handle Unicode correctly Low Unresolved

5 No validation of shift operator arguments Informational Partially
Resolved

6 Incorrect use of the JavaScript map function for Informational Resolved

executing side effects

Trail of Bits 28 TON Studio Tact Compiler
PUBLIC Security Assessment

7 Ohm library limitation for nested expressions Informational Unresolved

Detailed Fix Review Results

TOB-TACT-1: The Tact compiler does not support FunC files with .func extension
Resolved in commit abe8746. The . func extension was added to the filename check, and a
new test case was added to ensure that . func type files are imported correctly.

TOB-TACT-2: Circular dependencies in traits would crash the Tact compiler

Resolved in commit d12cf94. The current trait is now added to the processing list, and the
circular dependency is now detected. A new test case was added to check for circular
dependencies.

TOB-TACT-3: Symbolic links can be used to bypass path restrictions

Resolved in commit 40a6342. A new function to check filepaths for symbolic links and
disallow them was added to createNodeFilesystem. ts. All read and write file accesses
in the createNodeFileSystem function are now validated. Additionally, test files and test
cases were added to check for symbolic link imports.

TOB-TACT-4: Tact grammar does not handle Unicode correctly
Unresolved. No changes were made to the project to address this issue.

The client provided the following context for this finding's fix status:

We acknowledge possible Unicode exploits via text editors and most likely our long term
goal will be ban Unicode from Tact source code except comments and string literals.

TOB-TACT-5: No validation of shift operator arguments

Partially resolved in commit 32dbaa8. The implemented fix works only for constant
expressions, without variables. However, the team stated that proper constant propagation
static analysis will be included in the next Tact release. Tests were also added for constant
bit shifts.

TOB-TACT-6: Incorrect use of the JavaScript map function for executing side effects
Resolved in commit 80bf680. The renameModuleItems function was refactored to fix the
issue, and now the renamedItems map is correctly sorted when the flag is set.

TOB-TACT-7: Ohm library limitation for nested expressions
Unresolved. As this is a limitation in the Ohm library, it has not been resolved. However, the
team documented the issue in the Expressions section of Tact main documentation.

Trail of Bits 29 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/tact-lang/tact/commit/abe8746d26aa968c7d9d19e30f3e49524d508f1d
https://github.com/tact-lang/tact/commit/d12cf9427b5e96a4c14604c058b59e9f610e33e8
https://github.com/tact-lang/tact/commit/40a6342604ae3e36c662681739df5e1e6991e389
https://github.com/tact-lang/tact/commit/32dbaa8d84d200903c2c3321cc168707b7b832b7
https://github.com/tact-lang/tact/commit/00bf680218ae37f05a6f019ca2529a7a43642953
https://docs.tact-lang.org/book/expressions/

E. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
PUBLIC

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

30 TON Studio Tact Compiler
Security Assessment

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 31 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2025 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to TON
Studio under the terms of the project statement of work and has been made public at TON
Studio's request. Material within this report may not be reproduced or distributed in part
or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 32 TON Studio Tact Compiler
PUBLIC Security Assessment

https://github.com/trailofbits/publications

